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Summary. Genetic epidemiologic studies often collect genotype data at multiple loci within a genomic
region of interest from a sample of unrelated individuals. One popular method for analyzing such data is to
assess whether haplotypes, i.e., the arrangements of alleles along individual chromosomes, are associated with
the disease phenotype or not. For many study subjects, however, the exact haplotype configuration on the
pair of homologous chromosomes cannot be derived with certainty from the available locus-specific genotype
data (phase ambiguity). In this article, we consider estimating haplotype-specific association parameters in
the Cox proportional hazards model, using genotype, environmental exposure, and the disease endpoint
data collected from cohort or nested case–control studies. We study alternative Expectation-Maximization
algorithms for estimating haplotype frequencies from cohort and nested case–control studies. Based on a
hazard function of the disease derived from the observed genotype data, we then propose a semiparametric
method for joint estimation of relative-risk parameters and the cumulative baseline hazard function. The
method is greatly simplified under a rare disease assumption, for which an asymptotic variance estimator
is also proposed. The performance of the proposed estimators is assessed via simulation studies. An appli-
cation of the proposed method is presented, using data from the Alpha-Tocopherol, Beta-Carotene Cancer
Prevention Study.

Key words: Cohort study; Cox proportional hazards model; Nested case–control study; Unphased genotype
data.

1. Introduction
Genetic association studies based on marker genotype data
collected from a sample of unrelated individuals are now
widely used to study genetic mechanisms for complex dis-
eases. Haplotype-based association analysis, that is, the study
of the association between a disease phenotype and the com-
binations of alleles at multiple loci along individual chromo-
somes, has been argued to be more powerful than single-
locus analysis for detecting gene–disease association (Risch
and Merikangas, 1996; Botstein and Risch, 2003). However,
current molecular technology for directly identifying haplo-
types is expensive and is not feasible for large-scale epidemi-
ologic studies. Instead, typical studies collect locus-specific
genotype data that may not be fully informative regard-
ing which set of alleles lies on a particular chromosome
(phase ambiguity). For example, if A/a and B/b denote
the major/minor alleles in two di-allelic loci, then subjects
with genotypes (Aa) and (Bb) at the first and second lo-
cus, respectively, are considered “phase ambiguous”: their
genotypes could arise from either the haplotype pair (A − B,
a − b) or the haplotype pair (A − b, a − B). Uncertainty in
phase could also arise due to missing genotype information for
some loci. Thus, assessing disease-haplotype association with
only locus-specific genotype data is a special missing data
problem.

In recent years, various researchers have developed a num-
ber of methods for detecting haplotype-based associations
in the presence of phase ambiguity, using the case–control
epidemiologic study design (Fallin and Schork, 2000; Schaid
et al., 2002; Epstein and Satten, 2003; Stram et al., 2003;
Zhao, Li, and Khalid, 2003). In this article, we propose meth-
ods for haplotype analysis for cohort and nested case–control
studies, two widely used prospective epidemiologic study de-
signs. Cohort studies collect biologic samples and question-
naire data at baseline on a group of healthy subjects, who
are subsequently followed over a period of time to record in-
formation on disease incidence and age at onset/censoring.
For rare diseases such as cancer, nested case–control studies
(Thomas, 1977) conducted within an established cohort are
now increasingly being used for genetic association studies.
Studies using this design limit the genotyping effort and col-
lection of expensive biomarker information only to cases and
a small number of controls matched on follow-up time of the
cases.

Interest has thus arisen in assessing the association between
disease phenotypes and haplotypes using data collected from
cohort and nested case–control studies. Lin (2004) recently
proposed a nonparametric maximum-likelihood (NPMLE)
method for testing and estimation of haplotype effects in
the Cox proportional hazards (CPH) model using data from
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cohort studies. In this article, we develop an alternative
computationally simple method for estimating haplotype-
specific risk parameters in the CPH model, with data available
from either cohort or nested case–control studies.

In Section 2, we present the model and notation. In
Section 3, we propose alternative methods for unbiased es-
timation of haplotype frequencies in the underlying popu-
lation. In Section 4, we present methods for estimating the
relative-risk and the baseline hazard parameters of the CPH
model. In the same section, we show how a rare-disease ap-
proximation leads to a remarkably simple way of estimat-
ing the relative-risk parameters and an associated asymptotic
variance–covariance matrix. In Section 5, the methods are
illustrated using data from the Alpha-Tocopherol, Beta-
Carotene (ATBC) Cancer Prevention Study (Woodson et al.,
2003). In Section 6, we study the finite-sample properties of
the estimator, using simulated nested case–control studies in-
volving four marker loci in the genomic region GPX1. In this
section, we also evaluate the efficiency of the proposed method
relative to the NPMLE approach of Lin (2004) for analysis of
cohort studies. The article concludes in Section 7 by summa-
rizing some of the computational and practical advantages of
the proposed method.

2. Data Structure and Model Specification
Throughout this article, we assume, without loss of gener-
ality, that the underlying time scale of disease incidence is
biologic age. Let T denote the true age at onset of the disease
and C denote the censoring time. The observed phenotype
for an individual can be represented as [Δ = I(T ≤ C), X =
min (T , C)], where I is the indicator function. In full-cohort
studies, the multilocus genotype information G and data on
some possibly time-varying covariates Z(t) are collected on all
subjects. Suppose, K out of n subjects in the cohort develop
disease during the study period at K distinct disease times
t1 < t2 < · · ·< tK . We define Rk to be the set of all sub-
jects in the cohort at risk at tk (X ≥ tk ), and let nk be the
number of subjects in Rk. For nested case–control studies,
m − 1 controls are sampled without replacement from the
nondiseased subjects in Rk, and the sample consists of all
cases in the cohort and the sampled controls. Let R̃k be the
subset of all controls sampled from Rk together with the kth
case. The genotype information G and covariates Z(t) are col-
lected only for subjects in {R̃k : k = 1, . . . ,K}.

For a given data set, let H = {. . . , hr, . . . , hs, . . .} denote
the set of all possible haplotypes, and let D = (hr , hs) denote
the two haplotypes (the diplotype) an individual carries in
his/her pair of homologous chromosomes. In presence of phase
ambiguity, a multilocus genotype G could be consistent with
multiple diplotypes when G is heterozygous at two or more
loci. We will denote DG to be the set of all possible diplotypes
compatible with G.

Traditionally, the CPH model is the method of choice for
analyzing data from cohort and nested case–control studies.
Similar to Lin (2004), we propose to quantify the haplotype-
associated disease risk using the CPH model as follows. The
disease hazard at age t for an individual with diplotype D and
covariates Z(t) is modeled as

λ[t |D,Z(t)] = λ0(t)e
βD+β′

zZ(t), (1)

where λ0(t) is a nonparametric baseline hazard function, and
βD is the relative hazard (relative risk) associated with diplo-
type D in reference to the baseline diplotype D0. One may
impose more structural assumptions on the risk associated
with D (Wallenstein, Hodge, and Weston, 1998; Epstein and
Satten, 2003; Zhao et al., 2003). For example, the following
three models can be used: (i) β(hr,hs) = βhr + βhs (additive
model), (ii) β(hr,hs) = I(hr =hs)βhr + I(hr �= hs)(βhr + βhs)
(dominant model), and (iii) β(hr,hs) = I(hr = hs)βhr (reces-
sive model). Let βg denote the vector of regression parame-
ters associated with all diplotypes/haplotypes. Let β denote
(βg, βz). We will describe all of the methods in the context
of model (1), but note that the proposed methods can easily
be extended to include, for example, the interaction terms.

3. Estimation of Haplotype Frequencies
As will be seen later, estimation of parameters in the CPH
model (1), in the presence of phase ambiguity, requires know-
ing the frequencies of the different haplotypes in the under-
lying study population. In this section, we describe methods
for estimating haplotype frequencies.

We assume that the population under study is in Hardy–
Weinberg equilibrium (HWE). That is, if fr denotes the fre-
quency of the rth haplotype, the frequency of a diplotype
(hr , hs) is given by 2fr fs if r �= s and f 2

r if r = s. Let f
denote the vector of haplotype frequencies. Using unphased
genotype data from a random sample of unrelated indi-
viduals, Excoffier and Slatkin (1995) proposed to apply an
Expectation-Maximization (EM) algorithm for the estimation
of haplotype frequencies. For full-cohort studies, where geno-
type data are available on all members, such an EM algorithm
can be directly applied.

For nested case–control studies, however, cases and the
matched controls who have been selected to be genotyped
cannot be treated as a representative sample from the un-
derlying population. We consider two options for estimating
haplotype frequencies for this design. In one, we estimate the
haplotype frequencies based on the EM algorithm applied to
genotype data only from controls. Under the assumption that
the disease is rare and that the censoring mechanism is unre-
lated to the genomic region under study, the controls can be
treated as a representative sample from the underlying pop-
ulation. Thus the estimates of haplotype frequencies based
on only controls would be approximately unbiased. In an al-
ternative approach, we propose to use genotype data from all
cases and controls in the nested case–control sample but to ac-
count for differential sampling of cases and controls using the
Horvitz–Thompson (Horvitz and Thompson, 1952) weighting
approach. Specifically, we propose to weight the contribution
of each nonduplicated subject by the inverse of the sampling
probability for that subject being included in the nested case–
control sample. Typically, all cases from the underlying cohort
would be selected, and thus the sampling probability for each
case would be given by π = 1. Samuelsen (1997) showed that
for a nested case–control design, the sampling probability for
a nondiseased subject who is followed up to age X is given by

π = 1 −
∏

k:tk≤X

(
1 − m− 1

nk − 1

)
.
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Using these weights, we propose to use a weighted EM algo-
rithm where estimates of haplotype frequencies are iteratively
updated using the formula

f (s+1)
r =

n∑
i=1

1

πi

∑
D∈DGi

prf (s) [D = (hk, hl)] v
r
(kl)∑

D′∈DGi

prf (s) [D′ = (h′
k, h

′
l)]

2

n∑
i=1

1

πi

,

where vr(kl) = 2 if k = l = r, vr(kl) = 0 if k �= r and l �= r, and
vr(kl) = 1 otherwise. For full-cohort studies, where πi = 1 for
all subjects, the above algorithm reduces to the EM algorithm
of Excoffier and Slatkin (1995).

4. Estimation of Relative-Risk Parameters β

Since only G is observed but not D, standard Cox regression
analysis cannot be performed based on model (1). Follow-
ing Prentice (1982), we derive the hazard function for disease
conditional on the observable genotype data G and covari-
ates Z(t). Let Z̃(t) = {Z(s), 0 ≤ s ≤ t} denote the history of

Z(t) up to time t. Let Λ0(t) =
∫ t

0 λ0(t) dt denote the cumula-
tive baseline hazard function. Based on the diplotype-specific
hazard model given in equation (1), we derive the induced
model for λ[t |G, Z̃(t)] in the form

λ[t |G, Z̃(t)] = λ0(t)e
β′
zZ(t)rG,Z̃(t)[t; f , β,Λ0(·)], (2)

where

rG,Z̃(t)[t; f , β,Λ0(·)] =

∑
D∈DG

eβDpr[T > t |D, Z̃(t)]prf (D)∑
D∈DG

pr[T > t |D, Z̃(t)]prf (D)
,

pr[T > t |D, Z̃(t)] = exp

[
−eβD

∫ t

0

eβ
′
zZ(s)dΛ0(s)

]
,

and the diplotype frequencies prf (D) are defined in terms of
haplotype frequencies f assuming HWE (see Section 3). In
equation (2), eβ

′
zZ(t)rG,Z̃(t)[t; f , β,Λ0(·)] can be viewed as a

generalized relative-risk function that describes the relative
risk associated with the genotype G and covariates Z̃(t) in ref-
erence to the baseline hazard λ0(t). Unlike the original CPH
model (1), the induced model for genotype-specific hazard
does not follow the proportional hazards form; the function
rG,Z̃(t)[t; f , β,Λ0(·)] depends on the time-dependent cumula-
tive baseline hazard function Λ0(t).

4.1 Estimation of β and Λ0(t) for Cohort Studies
We propose jointly estimating β and Λ0(t) based on the in-
duced hazard function λ[t |G, Z̃(t)], with the haplotype fre-
quencies f fixed at their estimated value f̂ obtained using the
EM algorithm described in the previous section. For estima-
tion of β, we propose to use the partial likelihood function
(Cox, 1972) based on the induced hazard model λ[t |G, Z̃(t)],
the formula for which is given by

PL =
∏

k:Δk=1

eβ
′
zZk(tk)rGk,Z̃k(tk)[tk; f , β,Λ0(·)]∑

l∈Rk

eβ
′
zZl(tk)rGl,Z̃l(tk)[tk; f , β,Λ0(·)]

. (3)

We observe that partial likelihood (PL) involves not only β
but also the cumulative baseline hazard function Λ0(t). Mo-
tivated by Breslow’s estimator (1972, 1974), we propose an
estimating equation for Λ0(t) as

Λ0(tj) =
∑

k:tk≤tj

1∑
l∈Rk

eβ
′
zZl(tk)rGl,Z̃l(tk)[tk; f , β,Λ0(·)]

. (4)

We now propose to estimate β and Λ0(t) by iterating the
following steps:

1. Given current estimates Λ̂
(s)
0 (t) and β̂(s), we maximize

the PL as a function of βg with pr[T > t |D, Z̃(t)]
fixed at pr

[Λ̂(s)
0 (t),β̂(s)]

[T > t |D, Z̃(t)] in the formula of

rG,Z̃(t)[t; f , β,Λ0(·)] (see equation (3)) and eβ′
z Z (t) fixed at

eβ̂
(s)′
z Z(t). This step updates β̂

(s)
g to β̂

(s+1)
g .

2. Maximize the PL as a function of βz with rG,Z̃(t)[t; f ,

βg, βz,Λ0(·)] fixed at rG,Z̃(t)[t; f , β̂
(s+1)
g , β̂

(s)
z , Λ̂

(s)
0 (·)]. This

step can be performed by weighted Cox regression using
existing software such as S-plus. Thus, β̂

(s)
z is updated to

β̂
(s+1)
z .

3. Obtain Λ̂
(s+1)
0 (t) using the right-hand side of formula

(4) with rG,Z̃(t)[t; f , β,Λ0(·)] fixed at rG,Z̃(t)[t; f , β̂
(s+1),

Λ̂
(s)
0 (·)].

The above algorithm takes advantage of the fact that the
induced hazard function λ[t |G, Z̃(t)] retains the proportional
hazards form in Z(t). This is useful since direct maximization
of the PL over a large number of parameters in the presence
of time-dependent covariates can be numerically challenging.
The theoretical derivation of the asymptotic variance of β̂
is complex and would require modern semiparametric infer-
ence theory. We suggest obtaining the asymptotic variance
of β̂ using a nonparametric bootstrap sampling method that
naturally takes into account the additional variation due to
estimation of the nuisance parameters f and Λ0(t).

4.2 Estimation of β and Λ0(t) for Nested
Case–Control Studies

The PL function for nested case–control studies takes the
same form (equation (3)) as that for cohort studies (Oakes,
1981). The estimator for the cumulative baseline hazard
Λ0(t), however, needs to be modified to account for the
outcome-dependent sampling design. Motivated by Goldstein
and Langholz (1992), we propose the estimating function

Λ0(tj) =
∑

k:tk≤tj

1
nk

m

∑
l∈R̃k

eβ
′
zZl(tk)rGl,Z̃l(tk)[tk; f , β,Λ0(·)]

, (5)

where the weight nk/m in the denominator takes into account
the risk set sampling of the nested case–control design. The
iterative algorithm described for the cohort study now applies
with the modified estimator of Λ0(t).

4.3 Estimation of β and Λ0(t) Assuming Rare Disease
We consider a simplification of the estimation method, based
on a rare-disease approximation, that applies to both cohort
and nested case–control studies. The same approximation also
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leads to a simple asymptotic variance formula for the relative-
risk parameters. When the disease is rare, one can assume
pr[T > t |D, Z̃(t)] ≈ 1, so that

λ[t |G, Z(t)] ≈ λ0(t)rG,Z(t)(f , β), (6)

where

rG,Z(t)(f , β) = eβ
′
zZ(t)

∑
D∈DG

eβDprf (D |G).

Under this approximation, the relative-risk function rG,Z(t)(f,
β) does not depend on the baseline hazard function λ0(t). This
leads to a remarkably simple way of estimating the relative-
risk parameters β. As before, we assume that haplotype fre-
quencies f have been estimated by f̂ using an appropriate EM
algorithm. Then, β can be estimated by maximizing the PL

PLrare =
∏

k:Δk=1

eβ
′
zZk(tk)

∑
D∈DGk

eβDprf̂ (D |Gk)∑
l∈R̃k

eβ
′
zZl(tk)

∑
D∈DGl

eβDprf̂ (D |Gl)
,

with respect to β. Further, the asymptotic variance of β can
be estimated as

Î−1
ββ

/
n + Î−1

ββ Îβf

(
Înc
ff

)−1
ÎTβf Î

−1
ββ

/
nc,

as derived in the Appendix.

5. Application to Data from the ATBC Study
We applied our methods to analysis of data from the ATBC
Cancer Prevention Study conducted in Finland, a large, ran-
domized cancer prevention trial of male smokers assessing
the efficacy of supplementation with alpha-tocopherol, beta-
carotene, or both in reducing the incidence of lung, prostate,
and other cancers. The ATBC study cohort consisted of
29,133 white males who smoked at least five cigarettes daily.
The trial began in 1985 and ended in 1993, and subjects con-
tinued to be followed afterward. A nested case–control study
of prostate cancer was conducted within the cohort of ATBC
subjects who provided a whole-blood sample. From January
1, 1983 to December 31, 1994, 208 incident cases were ob-
served, and for each case a control was selected from the co-
hort matched on length of follow-up, age at randomization
(±5 years), intervention group, and study clinic (Woodson
et al., 2003). We excluded from the study 15 case–control
pairs for both of which no single-nucleotide polymorphism
(SNP) genotype data were available. It was of interest to as-
sess whether the gene IL1A affected the risk of prostate can-
cer and whether it modified the efficacy of alpha-tocopherol
treatment.

Two polymorphisms, IL1A889 (A/G) and IL1A4845
(T/C), were genotyped within the IL1A region. Out of
the remaining 193 case–control pairs, 55 pairs had in-
complete genotype data for IL1A polymorphisms. We es-
timated the haplotype frequencies based on controls to be
0.666/0.020/0.023/0.290 for the haplotypes AT/AC/GT/GC,
respectively. The two polymorphisms were in strong linkage
disequilibrium (D′ = 0.9), and neither of the loci significantly
departed from HWE. For illustrative purposes, we assumed an
additive model for the haplotype effect and applied our meth-
ods adopting the rare-disease approximation. Setting AT as

the reference haplotype, the log-relative-risk parameter esti-
mates for haplotype GC, the rare-haplotype category AC/GT,
and the interaction between GC and intervention were esti-
mated to be −0.051, −0.312, and 0.205, respectively, with
corresponding standard deviations (SDs) 0.230, 0.342, and
0.336. The analysis including only main effects for GC and
AC/GT led to log-relative-risk parameter estimates (SDs)
0.043 (0.163) and −0.342 (0.391), respectively. Thus, the cur-
rent investigation did not reveal any significant association
between IL1A haplotypes and the risk of prostate cancer, nor
did it show any significant modification of the intervention
effect by IL1A haplotypes. The investigators are now accu-
mulating more cases to increase the power of the study.

6. The Simulation Study
6.1 Finite-Sample Performance
We evaluated the performance of the proposed test using sim-
ulated genotype data in the context of GPX1. We selected four
common SNPs based on the resequencing data from a project
at the National Cancer Institute for 31 Caucasian American
subjects. The haplotypes that we reconstructed were 1112,
1111, 1212, 2121, 1211, 1121, and 2211, with “1” referring to
the wild-type and “2” to the variant allele. The corresponding
frequencies were 0.298, 0.267, 0.152, 0.117, 0.099, 0.034, and
0.032, respectively.

We first generated the diplotype data for a cohort of 3000
subjects assuming HWE based on the haplotype frequencies
above. We simulated the time-to-disease data using the ex-
ponential hazard model λ[t |D = (hr,hs)] = λ0e

βhr +βhs , as-
suming additive haplotype effects. The rare haplotypes 2121,
1211, 1121, and 2211 were combined into a single “rare hap-
lotypes” group, and haplotype 1112 was used as the baseline.
Thus, the disease-risk model involved three relative-risk (β)
parameters. The random censoring time C was generated from
the exponential distribution with hazard function γ(t) = γ.
The parameters λ0 and γ were chosen in such a way that ap-
proximately 10% of the subjects in the whole cohort would
be cases (Δ = 1). For each simulated cohort, a nested case–
control sample was drawn using a one-to-one matching ratio.
We then increased the amount of phase ambiguity by further
deleting the genotype information for each individual marker
for 20% of the subjects, randomly selected from the nested
case–control sample. The simulation study was replicated 200
times.

Table 1 shows the mean and SD of the estimated haplotype
frequencies for the simulated data. When data on both cases
and controls were used, the weighted EM algorithm (W-EM)
appeared to give consistent estimates, but when β �= 0, the
unweighted EM algorithm could produce substantial bias. Un-
der the null hypothesis (β = 0), the unweighted EM algorithm
was also consistent and produced more precise estimates. This
is not surprising because, when the disease risk is not associ-
ated with haplotypes, the haplotype distribution in the nested
case–control sample is still representative of that in the un-
derlying population. Thus, in this case, the unweighted EM
algorithm yields the efficient maximum-likelihood estimates.
Estimation using the unweighted EM algorithm applied to
only controls (EM rare) performed remarkably well, both in
terms of efficiency and unbiasedness.
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Table 1
Simulated nested case–control studies involving the GPX1 gene: performance of different EM algorithms for

estimation of f. Cohort size = 3000, control/case matching ratio = 1, number of cases ≈ 300.

β = (0, 0, 0) β = (1.5, 0.4, 0)

W-EM (SDE )a EM (SDE )b EM-rare (SDE )c W-EM (SDE ) EM (SDE ) EM-rare (SDE )

f1 0.298 (0.041) 0.300 (0.018) 0.298 (0.024) 0.301 (0.040) 0.242 (0.014) 0.312 (0.021)
f2 0.269 (0.042) 0.267 (0.017) 0.268 (0.023) 0.264 (0.034) 0.388 (0.016) 0.239 (0.019)
f3 0.156 (0.033) 0.151 (0.015) 0.153 (0.019) 0.152 (0.030) 0.140 (0.013) 0.153 (0.019)
f4 0.115 (0.023) 0.117 (0.011) 0.118 (0.015) 0.118 (0.022) 0.096 (0.009) 0.123 (0.013)
f5 0.094 (0.030) 0.098 (0.013) 0.098 (0.019) 0.096 (0.025) 0.080 (0.012) 0.103 (0.017)
f6 0.036 (0.016) 0.034 (0.007) 0.034 (0.009) 0.037 (0.022) 0.028 (0.007) 0.037 (0.010)
f7 0.032 (0.013) 0.033 (0.006) 0.032 (0.008) 0.033 (0.013) 0.026 (0.006) 0.034 (0.009)

aThe mean (standard deviation) of f̂ obtained from the weighted EM algorithm using both cases and controls.
bThe mean (standard deviation) of f̂ obtained from the ordinary EM algorithm using both cases and controls.
cThe mean (standard deviation) of f̂ obtained from the ordinary EM algorithm using only controls.

The performance of the proposed methods for estimating
relative-risk parameters (β) is shown in Table 2. We observe

that average estimates of the relative-risk parameters (
¯̂
β) were

very close to the true parameter values for all of the methods.
A comparison of the empirical SD of the estimates (SDE ) with
and without known phase information (“Cox” and “Exact”)
showed that phase ambiguity could result in a significant loss
of precision. The average estimates of the SD under the rare-
disease approximation (SDA) appeared to be very close to
the SDE . The corresponding simulated coverage probabilities
(“95% coverage”) were also generally close to the nominal
level of 95%.

We evaluated the consistency of the proposed estimator
for the cumulative baseline hazard function under the nested
case–control design (equation (6)). For each simulated data
set, we fit a linear regression model, without the intercept
term, to the estimates of Λ0(t) at the observed event times. By
comparing the corresponding averaged regression coefficients
to the true value of λ0, we found that the proposed estimator

Table 2
Simulation study involving GPX1 gene: performance of different estimators of relative-risk parameters. Cohort size = 3000,

control/case matching ratio = 1, number of cases ≈ 300.

Rare disease

β True value Cox (SDE )a Exact (SDE )b Rare (SDE )c SD
d
A 95% coveragee

Under the null
β1 0 −0.006 (0.139) −0.012 (0.190) −0.012 (0.190) 0.201 97.8%
β2 0 −0.023 (0.181) −0.035 (0.237) −0.034 (0.242) 0.247 95.6%
β3 0 −0.008 (0.144) −0.008 (0.158) −0.008 (0.158) 0.168 97.3%

Under the alternative
β1 1.5 1.526 (0.198) 1.534 (0.248) 1.499 (0.219) 0.220 93.8%
β2 0.4 0.427 (0.242) 0.420 (0.306) 0.422 (0.286) 0.268 90.8%
β3 0 0.008 (0.193) 0.005 (0.207) 0.012 (0.204) 0.202 96.4%

aThe mean (standard deviation) of β̂ obtained using standard Cox analysis assuming known phase.
bThe mean (standard deviation) of β̂ obtained using the proposed method without the rare-disease approximation, assuming unknown phase

information.
cThe mean (standard deviation) of β̂ obtained using the proposed method with the rare-disease approximation, assuming unknown phase

information.
dThe mean of estimated standard deviations obtained from the asymptotic variance–covariance formula under the rare-disease approximation.
e95% coverage probabilities.

for the cumulative baseline hazard function performed well.
In the simulation setting of Table 2, for example, the true λ0

was 0.182. The λ̂0 were 0.197 and 0.190 for β = (0, 0, 0) and
β = (1.5, 0.4, 0), respectively.

6.2 Efficiency of the Proposed Method for Cohort Studies
Relative to the NPMLE Approach of Lin (2004)

We conducted simulation studies to compare the proposed
method with the NPMLE approach of Lin (2004). We consid-
ered a simple scenario involving two di-allelic loci with four
haplotypes (AB, Ab, aB, aa), where A/a and B/b are the two
alleles at the first and the second locus, respectively. We as-
sumed all of the four haplotypes are equally frequent (f =
0.25), a setting that guarantees a substantial amount of phase
ambiguity in the corresponding genotype data. We generated
diplotype data for the cohort of subjects as before. We gen-
erated time-to-disease onset (T) from a Weibull distribution
assuming that the haplotype Ab is associated with the risk of
disease with a corresponding log-relative-risk (β) parameter
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Table 3
Cohort studies: comparison of the proposed method for estimating β and f with the NPMLE procedure of Lin (2004). Cohort

size = 1000. f = (0.25, 0.25, 0.25, 0.25).

350 cases 100 cases

True β NPMLEa Exactb Rare diseasec NPMLE Exact Rare disease

1.5
¯̂
β(SD) 1.498 (0.140) 1.499 (0.143) 1.360 (0.121) 1.509 (0.256) 1.516 (0.255) 1.480 (0.243)
¯̂f 1(SD) 0.250 (0.011) 0.250 (0.010)d 0.250 (0.012) 0.250 (0.012)
¯̂f 2(SD) 0.249 (0.011) 0.250 (0.010) 0.250 (0.012) 0.250 (0.011)
¯̂f 3(SD) 0.251 (0.011) 0.251 (0.011) 0.250 (0.012) 0.250 (0.011)
¯̂f 4(SD) 0.250 (0.011) 0.250 (0.010) 0.250 (0.012) 0.250 (0.012)

0
¯̂
β(SD) 0.001 (0.137) 0.001 (0.137) 0.000 (0.137) 0.031 (0.247) 0.031 (0.248) 0.032 (0.248)
¯̂f 1(SD) 0.249 (0.011) 0.249 (0.011) 0.250 (0.012) 0.250 (0.011)
¯̂f 2(SD) 0.250 (0.011) 0.250 (0.011) 0.250 (0.011) 0.250 (0.011)
¯̂f 3(SD) 0.251 (0.012) 0.251 (0.011) 0.250 (0.011) 0.250 (0.011)
¯̂f 4(SD) 0.250 (0.012) 0.250 (0.011) 0.249 (0.011) 0.249 (0.010)

aThe NPMLE (average and empirical standard deviation) of Lin (2004).
bThe proposed method without the rare-disease assumption (average and empirical standard deviation).
cThe proposed method with the rare-disease assumption (average and empirical standard deviation).
dThe proposed method adopted the EM algorithm of Excoffier and Slatkin (1995) based on the full cohort.

of either 0 or 1.5. The shape and the scale parameters for
the Weibull distribution were chosen in such a way that the
overall disease rate in the population was on average 35% or
10%.

For estimation of the relative-risk parameters (Table 3),
the rare-disease approximation for the proposed method led
to negligible bias except when the disease rate was as high as
35% and the true value of β was 1.5. The bias in the latter sit-
uation was noticeable, but modest. The SDs for the proposed
method, with or without the rare-disease assumption, were
very close to those for NPMLE in all of the scenarios consid-
ered. The bias and SDs of the estimates of haplotype frequen-
cies using the ordinary EM algorithm applied to the whole
cohort were very similar to those obtained from the NPMLE
method (Table 3). When the disease rate was 10%, which re-
sulted in a small number of cases, the proposed algorithm
for estimating the haplotype frequencies and relative-risk pa-
rameters in separate steps seemed to have better convergence
properties than the NPMLE method that jointly estimates
the two sets of parameters. In particular, the NPMLE method
failed to converge within 500 iterations for 17 out of the 200
simulations.

7. Discussion
A comparison of the proposed method with the NPMLE pro-
cedure proposed by Lin (2004) for cohort studies merits fur-
ther discussion. A major advantage of the proposed method
is that it is applicable not only to cohort studies but also
to nested case–control studies. Full-cohort studies, although
popularly used for common traits such as heart disease, are
not practical for the study of rare diseases such as cancer, as
the study may require genotyping and expensive ascertain-
ment of environmental exposures for an unnecessarily large
number of subjects. Thus, many existing cohorts, such as
the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer

Screening Trial at the National Cancer Institute, are now be-
ing used for conducting nested case–control studies of genetic
susceptibilities and gene–environment interactions.

The NPMLE method of Lin (2004) estimates haplotype
frequency parameters (f) jointly with the parameters β and
λ0(t) of the CPH model. In contrast, we propose to estimate
the haplotype frequencies (f) in a separate step, completely
independent of the estimation of β and λ0(t). For both co-
hort studies and nested case–control studies, assuming the
rare-disease approximation for the latter design, we propose
estimating f based on an ordinary EM algorithm that has
been widely used for estimating haplotype frequencies from
unphased genotype data. This allows one to take advantage
of the existing computationally efficient programs (e.g., Niu
et al., 2002), which could be particularly useful when a large
number of SNPs are involved. In our limited simulation stud-
ies, where we compared the performance of the proposed
method with that of NPMLE, we also found that estimat-
ing the haplotype frequencies independently of parameters of
the CPH model led to a more stable and faster algorithm of
parameter estimation.

Under the rare-disease approximation, the standard form
of the proposed PLrare leads to several practical advan-
tages. When ties are present, standard solutions for cohort
and nested case–control studies (Breslow, 1974; Borgan and
Langholz, 1993) can be applied. Modification of our approach
can also be easily developed for other study designs, such
as the counter-matching design (Langholz and Borgan, 1995)
and the case–cohort design (Prentice, 1986). For nested case–
control studies, matching on several time-dependent factors,
such as age and calendar year, can also be handled without
additional complications.

The NPMLE procedure of Lin (2004) is asymptotically
most efficient under the setting of cohort design. We con-
ducted limited simulation studies to compare the bias and
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efficiency of the proposed method, with or without the rare-
disease approximation, with those of NPMLE. We found that
the rare-disease approximation for the proposed method led
to quite small bias even when the disease was relatively com-
mon with an overall prevalence of 35%. The loss of efficiency of
the proposed method compared to the NPMLE was also neg-
ligible or minimal. These results are encouraging given that
the proposed method, with the rare-disease assumption, is
computationally very simple and can be easily generalized to
various alternative designs. In future, however, more elaborate
simulation studies are needed to compare the two methods in
a wider variety of situations.
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Appendix

We derive the asymptotic variance formula for the proposed
method under the rare-disease approximation. Here we as-
sume a nested case–control design but note that the same
derivation follows for the cohort design with only slight change
of notation.

A.1 Consistency
We first show the approximate unbiasedness of U(β, f). The
proof and notation here closely follow results in Borgan and
Langholz (1993) and Borgan, Goldstein, and Langholz (1995).
Define Ft− to be the filtration containing information on
(Δ,X) in the cohort, genotype G, and the sampling
information in the interval [0, t). Define N (i,r)(t) to be the
counting process for the observed number of failures for
the ith subject in [0, t] with associated sampled risk set
r. Then N (i,r)(t) has intensity λ(i,r)(t) = λ0(t)e

βDiπt(r | i),
where πt(r | i) is the conditional probability that subset r is
chosen from the risk set at event time t given Ft− and that

i fails at t. Then M(i,r)(t) = N(i,r)(t) −
∫ t

0 λ(i,r)(u) du is a lo-
cal square integrable martingale with respect to filtration Ft−.
The random variables M (i,r)(t) and M (i,r)(s) at different time
points t and s are uncorrelated and have mean zero.

Let s(D) be the design vector corresponding to the diplo-
type D, and let Pm denote collection of all subsets of
{1, 2, . . . ,n} of size m. For any function of diplotype D, c(D),
let E[c(D) |G] =

∑
D∈DG

c(D)prf (D |G). Without loss of gen-
erality, we assume that the study is conducted in a fixed time
period τ . The score function for β can be written as

U(β, f ; τ)

=
1

n

∫ τ

0

∑
r∈Pm

∑
i∈r

⎡⎢⎢⎣E
[
s(D)eβs(D)

∣∣Gi

]
E
[
eβs(D)

∣∣Gi

]

−

∑
l∈r

E
[
s(D)eβs(D)

∣∣Gl

]
∑
l∈r

E
[
eβs(D)

∣∣Gl

]
⎤⎥⎥⎦ dM (i,r)(t)

(Borgan et al., 1995). The integrand in the above formula
is unrelated to time t and thus is predictable. By the stan-
dard martingale theory, the process U(β, f; t) is a martingale
so that E[U(β, f; τ)] = 0. Moreover, the estimate of f using

data from controls only is approximately consistent under the
rare-disease assumption. The existence and consistency of the
estimate of β that solves U(β, f̂ ; τ) = 0 now follow from the
results given in Foutz (1977).

A.2 Asymptotic Normality
A standard Taylor’s series expansion of U(β̂, f̂) around
the true parameter values (β, f) leads to n1/2(β̂ − β) =
I−1
ββn

1/2U(β, f ; τ) − I−1
ββIβfn

1/2(f̂ − f) + op(1), where Iββ and
Iβf are the large-sample limits of −∂U(β, f)/∂β and
−∂U(β, f)/∂f, respectively. Following the standard asymp-
totic theory for nested case–control studies (Borgan and
Langholz, 1993), we have cov[U(β, f; τ)] = Iββ and
n1/2U(β, f ; τ) ∼ Normal(0, Iββ). Moreover, from standard
parametric maximum-likelihood inference theory, we have
(nc)

1/2(f̂ − f) ∼ Normal[0, (Icff )−1], where nc is the total num-
ber of nonreplicated controls and Icff is the asymptotic infor-
mation matrix for f (Excoffier and Slatkin, 1995).

Furthermore, U(β, f; τ) and (f̂ − f) are asymptotically un-
correlated, which can be shown as follows. Let l̇p(Gj ; f) be the
jth control’s contribution to the maximum-likelihood score
function for f. Then

√
nc(f̂ − f) =

1√
nc

nc∑
j=1

l̇p(Gj ; f) + op(1).

Let H(β, f ; t) = U(β, f ; t)
∑nc

j=1 l̇
p(Gj ; f). We need to

prove EH(β, f; t) = 0. The proof follows by verifying that
H(β, f; t) is a martingale or equivalently the condition
E[dH (β, f ; t) | Ft−] = 0. To show this, we note that
E[dH(β, f ; t) | Ft−] = E[

∑nc

j=1 l̇
p(Gj ; f) dU(β, f ; t) | Ft−]. Since

Ft− contains genotype information G for all sub-
jects in the full cohort, we have E[dH(β, f ; t) | Ft−] =
E{dU(β, f ; t) | Ft−}

∑nc

j=1 l̇
p(Gj ; f), which is equal to zero as

U(β, f; t) is a martingale.
We further assume that as n goes to infinity, n/nc con-

verges to a fixed number ρ. For one-to-one matching, for ex-
ample, ρ could be roughly equal to the disease prevalence
in the cohort. The results above show that n1/2(β̂ − β) fol-
lows an asymptotically normal distribution with variance Σ =
I−1
ββ + ρI−1

ββIβf(I
nc
ff )−1ITβfI

−1
ββ . Here Σ can be estimated as

follows. Let Îββ = −∂U(β, f)/∂β|β̂,f̂ , Îβf = −∂U(β, f)/∂f |β̂,f̂ ,
and Înc

ff be the estimated information matrix for f using

controls only. Then Σ can be consistently estimated as Σ̂ =
Î−1
ββ + Î−1

ββ Îβf (Î
nc
ff )−1ÎTβf Î

−1
ββn/nc. Above, Îβf and Îββ can be

easily obtained by suitable analytical or numerical derivatives
of U(β̂, f̂).


